General Overview


Logo

This report is the result of the use of the Python 3.4 package Sympy (for symbolic mathematics), as means to translate published models to a common language. It was created by Verónika Ceballos-Núñez (Orcid ID: 0000-0002-0046-1160) on 29/7/2015, and was last modified on lm.

About the model

The model depicted in this document considers carbon allocation with a process based approach. It was originally described by Hilbert & Reynolds (1991).

Abstract

A model is developed that considers the allocation of carbon and nitrogen substrates to a protein compartment in the shoots, shoot structural components, and root biomass. Inclusion of a shoot-protein compartment allows variation in shoot-specific activity to be modelled as a function of leaf nitrogen concentration. Allocation to the biomass compartments is controlled by two partitioning variables that are defined by explicitly using the balanced activity hypothesis. The model produces balanced activity where the shoot-specific activity, as well as root and shoot biomass, vary in response to the above-ground (light and CO\(_2\)) and below-ground (nitrogen) environments. The predicted patterns of both root: shoot ratio and leaf nitrogen concentration in response to environmental resource availability are qualitatively consistent with general trends observed in plants.

Space Scale

global

Available parameter values

Information on given parameter sets
Abbreviation Source
Original dataset of the publication Hilbert & Reynolds (1991)

State Variables

The following table contains the available information regarding this section:

Information on State Variables
Name Description
\(W_{p}\) Mass of leaf proteins
\(W_{s}\) Mass of leaf structural components
\(W_{r}\) Mass of roots
\(W_{C}\) Substrate carbon
\(W_{N}\) Substrate nitrogen

Additional Variables

The following table contains the available information regarding this section:

Information on Additional Variables
Name Description Expressions Type Units Values

Original dataset of the publication
\(W_{g}\) Plant biomass \(W_{g}=W_{p}+W_{s}+W_{r}\) variable - -
\(\kappa\) growth rate coefficient - parameter - -
\(\sigma_{c}\) photosynthetic rate per unit leaf - parameter - -
\(\sigma_{r}\) specific root activity - variable \([g N (g root)^{-1} d^{-1}]\) -
\(h_{max}\) leaf max. thickness - parameter \([m]\) -
\(h_{half}\) \(h_0.5\) leaf half thickness - parameter - -
\(I\) photon flux density - variable \([\mu mol\, m^{-2}\,s^{-1}]\) -
\(\rho\) leaf density - variable - -
\(f_{C}\) proportion of carbon - parameter - -
\(f_{N}\) proportion of nitrogen - parameter - -
\(B\) target whole plant nitrogen:carbon ratio - parameter - -
\(f_{cp}\) proportion of carbon in leaf proteins - parameter - -
\(f_{cs}\) proportion of carbon in leaf structural components - parameter - -
\(f_{cr}\) proportion of carbon in roots - parameter - -
\(f_{np}\) proportion of nitrogen in leaf proteins - parameter - -
\(f_{ns}\) proportion of nitrogen in leaf structural components - parameter - -
\(f_{nr}\) proportion of nitrogen in roots - parameter - -
\(C\) Substrate carbon concentration \(C=\frac{W_{C}}{W_{g}}\) variable - -
\(N\) Substrate nitrogen concentration \(N=\frac{W_{N}}{W_{g}}\) variable - -
\(h\) - \(h=\frac{h_{max}\,I}{h_{half}+I}\) variable - -
\(A\) Area \(A=\frac{W_{s}}{\rho}\,h\) variable - -
\(P\) - \(P=\frac{f_{C}\,\sigma_{r}\,W_{r}}{f_{N}}\,\sigma_{c}\,A\) variable - -
\(Q\) - \(Q=\frac{f_{N}}{Beta\,f_{C}}\) parameter - -

Allocation Coefficients

The following table contains the available information regarding this section:

Information on Allocation Coefficients
Name Expressions Type Values

Original dataset of the publication
\(\lambda_{p}\) \(\lambda_{p}=\frac{P}{1+P+Q}\) variable \(\frac{1}{3}\)
\(\lambda_{s}\) \(\lambda_{s}=\frac{Q}{1+P+Q}\) variable \(\frac{1}{3}\)
\(\lambda_{r}\) \(\lambda_{r}=\frac{1}{1+P+Q}\) variable \(\frac{1}{3}\)

Auxiliary Variables

The following table contains the available information regarding this section:

Information on Auxiliary Variables
Name Description Entry Author Orcid Expressions Values

Original dataset of the publication
\(O_{C}\) output share of \(W_C\) 0000-0002-8239-1601 \(O_{C}=f_{cp}\,lambda_{p}\,W_{p}+f_{cs}\,lambda_{s}\,W_{s}+f_{cr}\,lambda_{r}\,W_{r}\) -
\(O_{N}\) output share of \(W_N\) 0000-0002-8239-1601 \(O_{N}=f_{np}\,lambda_{p}\,W_{p}+f_{ns}\,lambda_{s}\,W_{s}+f_{nr}\,lambda_{r}\,W_{r}\) -

Components

The following table contains the available information regarding this section:

Information on Components
Name Description Entry Author Orcid Expressions
\(x\) vector of states for vegetation 0000-0002-8239-1601 \(x=\left[\begin{matrix}W_{p}\\W_{s}\\W_{r}\\W_{C}\\W_{N}\end{matrix}\right]\)
\(Inp\) external inputs through photosysthesis and roots 0000-0002-8239-1601 \(Inp=\left[\begin{matrix}C\cdot N\cdot W_{p}\cdot\kappa\cdot\lambda_{p}\cdot\left(- f_{cp} - f_{np} + 1\right)\\C\cdot N\cdot W_{s}\cdot\kappa\cdot\lambda_{s}\cdot\left(- f_{cs} - f_{ns} + 1\right)\\C\cdot N\cdot W_{r}\cdot\kappa\cdot\lambda_{r}\cdot\left(- f_{cr} - f_{nr} + 1\right)\\A\cdot\sigma_{c}\\W_{r}\cdot\sigma_{r}\end{matrix}\right]\)
\(T\) - 0000-0002-8239-1601 \(T=\left[\begin{matrix}-1 & 0 & 0 &\frac{W_{p}}{O_{C}}\cdot f_{cp}\cdot\lambda_{p} &\frac{W_{p}}{O_{N}}\cdot f_{np}\cdot\lambda_{p}\\0 & -1 & 0 &\frac{W_{s}}{O_{C}}\cdot f_{cs}\cdot\lambda_{s} &\frac{W_{s}}{O_{N}}\cdot f_{ns}\cdot\lambda_{s}\\0 & 0 & -1 &\frac{W_{r}}{O_{C}}\cdot f_{cr}\cdot\lambda_{r} &\frac{W_{r}}{O_{N}}\cdot f_{nr}\cdot\lambda_{r}\\0 & 0 & 0 & -1 & 0\\0 & 0 & 0 & 0 & -1\end{matrix}\right]\)
\(N_{gm}\) - 0000-0002-8239-1601 \(N_{gm}=\left[\begin{matrix}0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0\\0 & 0 & 0 &\frac{N}{W_{g}}\cdot O_{C}\cdot\kappa & 0\\0 & 0 & 0 & 0 &\frac{C}{W_{g}}\cdot O_{N}\cdot\kappa\end{matrix}\right]\)
\(f_{v}\) the righthandside of the ode 0000-0002-8239-1601 \(f_{v}=Inp+T\,N_{gm}\,x\)

Pool model representation

Flux description

Figure 1
Figure 1: Pool model representation

Input fluxes

\(W_{p}: \frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\)
\(W_{s}: \frac{W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\)
\(W_{r}: \frac{W_{C}\cdot W_{N}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\)
\(W_{C}: \frac{I\cdot W_{s}\cdot h_{max}\cdot\sigma_{c}}{\rho\cdot\left(I + h_{half}\right)}\)
\(W_{N}: W_{r}\cdot\sigma_{r}\)

Internal fluxes

\(W_{C} > W_{p}: \frac{B\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(B\cdot I\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r} + B\cdot f_{C}\cdot f_{N}\cdot\rho\cdot\left(I + h_{half}\right) + f_{N}^{2}\cdot\rho\cdot\left(I + h_{half}\right)\right)}\)
\(W_{C} > W_{s}: \frac{W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}^{2}\cdot f_{cs}\cdot\kappa\cdot\rho\cdot\left(I + h_{half}\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(B\cdot I\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r} + B\cdot f_{C}\cdot f_{N}\cdot\rho\cdot\left(I + h_{half}\right) + f_{N}^{2}\cdot\rho\cdot\left(I + h_{half}\right)\right)}\)
\(W_{C} > W_{r}: \frac{B\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{C}\cdot f_{N}\cdot f_{cr}\cdot\kappa\cdot\rho\cdot\left(I + h_{half}\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(B\cdot I\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r} + B\cdot f_{C}\cdot f_{N}\cdot\rho\cdot\left(I + h_{half}\right) + f_{N}^{2}\cdot\rho\cdot\left(I + h_{half}\right)\right)}\)
\(W_{N} > W_{p}: \frac{B\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(B\cdot I\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r} + B\cdot f_{C}\cdot f_{N}\cdot\rho\cdot\left(I + h_{half}\right) + f_{N}^{2}\cdot\rho\cdot\left(I + h_{half}\right)\right)}\)
\(W_{N} > W_{s}: \frac{W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}^{2}\cdot f_{ns}\cdot\kappa\cdot\rho\cdot\left(I + h_{half}\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(B\cdot I\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r} + B\cdot f_{C}\cdot f_{N}\cdot\rho\cdot\left(I + h_{half}\right) + f_{N}^{2}\cdot\rho\cdot\left(I + h_{half}\right)\right)}\)
\(W_{N} > W_{r}: \frac{B\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{C}\cdot f_{N}\cdot f_{nr}\cdot\kappa\cdot\rho\cdot\left(I + h_{half}\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(B\cdot I\cdot W_{r}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r} + B\cdot f_{C}\cdot f_{N}\cdot\rho\cdot\left(I + h_{half}\right) + f_{N}^{2}\cdot\rho\cdot\left(I + h_{half}\right)\right)}\)

The right hand side of the ODE

\(\left[\begin{matrix}\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\\\frac{W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\\\frac{W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\\\frac{I\cdot W_{s}\cdot h_{max}\cdot\sigma_{c}}{\rho\cdot\left(I + h_{half}\right)} -\frac{W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right)\\-\frac{W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) + W_{r}\cdot\sigma_{r}\end{matrix}\right]\)

The Jacobian (derivative of the ODE w.r.t. state variables)

\(\left[\begin{matrix}-\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} & -\frac{I^{2}\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}^{2}\cdot W_{s}\cdot f_{C}^{2}\cdot f_{cp}\cdot h_{max}^{2}\cdot\kappa\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I^{2}\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}^{2}\cdot W_{s}\cdot f_{C}^{2}\cdot f_{np}\cdot h_{max}^{2}\cdot\kappa\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I^{2}\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}^{2}\cdot W_{s}\cdot f_{C}^{2}\cdot h_{max}^{2}\cdot\kappa\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} & -\frac{I^{2}\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}^{2}\cdot f_{C}^{2}\cdot f_{cp}\cdot h_{max}^{2}\cdot\kappa\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I^{2}\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}^{2}\cdot f_{C}^{2}\cdot f_{np}\cdot h_{max}^{2}\cdot\kappa\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I^{2}\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}^{2}\cdot f_{C}^{2}\cdot h_{max}^{2}\cdot\kappa\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{p}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} &\frac{I\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{N}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} &\frac{I\cdot W_{C}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{I\cdot W_{C}\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cp} - f_{np} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\\-\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} & -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{cs}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{ns}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} & -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{s}^{2}\cdot f_{cs}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{s}^{2}\cdot f_{ns}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{s}^{2}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} &\frac{W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{N}\cdot W_{s}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{N}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} &\frac{W_{C}\cdot W_{s}\cdot f_{N}\cdot f_{cs}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{s}\cdot f_{N}\cdot f_{ns}\cdot\kappa}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{s}\cdot f_{N}\cdot\kappa\cdot\left(- f_{cs} - f_{ns} + 1\right)}{B\cdot f_{C}\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\\-\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} & -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}^{2}\cdot f_{C}\cdot f_{cr}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}^{2}\cdot f_{C}\cdot f_{nr}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}^{2}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cr} - f_{nr} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} & -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cr}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{nr}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}\cdot\left(- f_{cr} - f_{nr} + 1\right)}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{2\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{3}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{N}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} &\frac{W_{N}\cdot W_{r}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{N}\cdot W_{r}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{N}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} &\frac{W_{C}\cdot W_{r}\cdot f_{cr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{r}\cdot f_{nr}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{C}\cdot W_{r}\cdot\kappa\cdot\left(- f_{cr} - f_{nr} + 1\right)}{\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\\-\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{2\cdot W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) &\frac{I\cdot h_{max}\cdot\sigma_{c}}{\rho\cdot\left(I + h_{half}\right)} -\frac{W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(-\frac{I^{2}\cdot W_{p}\cdot W_{r}^{2}\cdot W_{s}\cdot f_{C}^{2}\cdot f_{cp}\cdot h_{max}^{2}\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{I\cdot W_{p}\cdot W_{r}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{I\cdot W_{r}^{2}\cdot f_{C}\cdot f_{cr}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{cs}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) +\frac{2\cdot W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) & -\frac{W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(-\frac{I^{2}\cdot W_{p}\cdot W_{r}\cdot W_{s}^{2}\cdot f_{C}^{2}\cdot f_{cp}\cdot h_{max}^{2}\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{I\cdot W_{p}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cr}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} -\frac{I\cdot W_{s}^{2}\cdot f_{cs}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}}\right) +\frac{2\cdot W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) & -\frac{W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) & -\frac{W_{C}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{cp}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{cr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{cs}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right)\\-\frac{I\cdot W_{C}\cdot W_{N}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\kappa\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(W_{p} + W_{r} + W_{s}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{2\cdot W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) & -\frac{W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(-\frac{I^{2}\cdot W_{p}\cdot W_{r}^{2}\cdot W_{s}\cdot f_{C}^{2}\cdot f_{np}\cdot h_{max}^{2}\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{I\cdot W_{p}\cdot W_{r}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{I\cdot W_{r}^{2}\cdot f_{C}\cdot f_{nr}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} -\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{ns}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) +\frac{2\cdot W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) & -\frac{W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(-\frac{I^{2}\cdot W_{p}\cdot W_{r}\cdot W_{s}^{2}\cdot f_{C}^{2}\cdot f_{np}\cdot h_{max}^{2}\cdot\sigma_{c}^{2}\cdot\sigma_{r}^{2}}{f_{N}^{2}\cdot\rho^{2}\cdot\left(I + h_{half}\right)^{2}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{I\cdot W_{p}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} -\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{nr}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}} +\frac{f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} -\frac{I\cdot W_{s}^{2}\cdot f_{ns}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{B\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)^{2}}\right) +\frac{2\cdot W_{C}\cdot W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{3}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) +\sigma_{r} & -\frac{W_{N}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right) & -\frac{W_{C}\cdot\kappa}{\left(W_{p} + W_{r} + W_{s}\right)^{2}}\cdot\left(\frac{I\cdot W_{p}\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot f_{np}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)} +\frac{W_{r}\cdot f_{nr}}{\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}} +\frac{W_{s}\cdot f_{N}\cdot f_{ns}}{B\cdot f_{C}\cdot\left(\frac{I\cdot W_{r}\cdot W_{s}\cdot f_{C}\cdot h_{max}\cdot\sigma_{c}\cdot\sigma_{r}}{f_{N}\cdot\rho\cdot\left(I + h_{half}\right)} + 1 +\frac{f_{N}}{B\cdot f_{C}}\right)}\right)\end{matrix}\right]\)

References

Hilbert, D. W., & Reynolds, J. F. (1991). A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity. Annals of Botany, 68(5), 417–425.