General Overview


Logo

This report is the result of the use of the Python 3.4 package Sympy (for symbolic mathematics), as means to translate published models to a common language. It was created by Holger Metzler (Orcid ID: 0000-0002-8239-1601) on 15/03/2016, and was last modified on lm.

About the model

The model depicted in this document considers soil organic matter decomposition. It was originally described by Zelenev, van Bruggen, & Semenov (2000).

Abstract

Previously, we discovered the phenomenon of wavelike spatial distributions of bacterial populations and total organic carbon (TOC) along wheat roots. We hypothesized that the principal mechanism underlying this phenomenon is a cycle of growth, death, autolysis, and regrowth of bacteria in response to a moving substrate source (root tip). The aims of this research were (i) to create a simulation model describing wavelike patterns of microbial populations in the rhizosphere, and (ii) to investigate by simulation the conditions leading to these patterns. After transformation of observed spatial data to presumed temporal data based on root growth rates, a simulation model was constructed with the Runge-Kutta integration method to simulate the dynamics of colony-forming bacterial biomass, with growth and death rates depending on substrate content so that the rate curves crossed over at a substrate concentration within the range of substrate availability in the model. This model was named "BACWAVE," standing for "bacterial waves." Cyclic dynamics of bacteria were generated by the model that were translated into traveling spatial waves along a moving nutrient source. Parameter values were estimated from calculated initial substrate concentrations and observed microbial distributions along wheat roots by an iterative optimization method. The kinetic parameter estimates fell in the range of values reported in the literature. Calculated microbial biomass values produced spatial fluctuations similar to those obtained for experimental biomass data derived from colony forming units. Concentrations of readily utilizable substrate calculated from biomass dynamics did not mimic measured concentrations of TOC, which consist not only of substrate but also various polymers and humic acids. In conclusion, a moving pulse of nutrients resulting in cycles of growth and death of microorganisms can indeed explain the observed phenomenon of moving microbial waves along roots. This is the first report of wavelike dynamics of microorganisms in soil along a root resulting from the interaction of a single organism group with its substrate.

Keywords

differential equations, nonlinear, time variant

Principles

mass balance, substrate dependence of decomposition, heterogeneity of speed of decay, internal transformations of organic matter, substrate interactions

Available parameter values

Information on given parameter sets
Abbreviation Description
Set 1 original values from linked model (no nitrogen cycle considered in this model here)

Available initial values

Information on given sets of initial values
Abbreviation Description
Low standard version of BACWAVE, optimized to simulate bacterial biomass along wheat roots
Medium standard version of BACWAVE, optimized to simulate bacterial biomass along wheat roots
High standard version of BACWAVE, optimized to simulate bacterial biomass along wheat roots

State Variables

The following table contains the available information regarding this section:

Information on State Variables
Name Description Units Low Medium Values

High
\(X\) microbial biomass pool \(\mu gC cm^{-3}\) \(0.5\) \(1.0\) \(1.5\)
\(S\) substrate pool \(\mu gC cm^{-3}\) \(1.5\) \(2.5\) \(4.0\)

Parameters

The following table contains the available information regarding this section:

Information on Parameters
Name Description Type Units Values

Set 1
\(\mu_{max}\) maximal relative growth rate of bacteria parameter \(hr^{-1}\) \(0.063\)
\(D_{max}\) maximal relative death rate of bacteria parameter \(hr^{-1}\) \(0.26\)
\(K_{s}\) substrate constant for growth parameter \(\mu gC cm^{-3}\) \(3.0\)
\(K_{d}\) substrate constant for death of bacteria parameter \(\mu gC cm^{-3}\) \(14.5\)
\(K_{r}\) fraction of dead biomass recycling to substrate parameter - \(0.4\)
\(\theta\) soil water content parameter \(ml\text{ solution }cm^{-3}\text{ soil}\) \(0.23\)
\(Y\) yield coefficient for bacteria parameter - \(0.44\)
\(ExuM\) maximal exudation rate parameter \(\mu gC hr^{-1}cm^{-3}\) \(8\)
\(ExuT\) time constant for exudation, responsible for duration of exudation parameter \(hr^{-1}\) \(0.8\)
\(BGF\) constant bakground flux of substrate parameter \(\mu g C cm^{-3}hr^{-1}\) \(0.15\)

Additional Variables

The following table contains the available information regarding this section:

Information on Additional Variables
Name Description Expressions Type Units Values

Set 1
\(t\) time - variable \(hr\) -
\(\mu_{S}\) relative growth rate of bacteria (dependent on substrate concentration) \(\mu_{S}=\frac{\mu_{max}\,S}{K_{s}\,\theta+S}\) variable \(hr^{-1}\) -
\(Exu\) exudation rate (dependent on time) \(Exu=ExuM\,\operatorname{exp}\left(- ExuT\,t\right)\) variable \(hr^{-1}\) -

Components

The following table contains the available information regarding this section:

Information on Components
Name Description Expressions
\(C\) carbon content \(C=\left[\begin{matrix}X\\S\end{matrix}\right]\)
\(I\) input vector \(I=\left[\begin{matrix}0\\BGF + Exu\end{matrix}\right]\)
\(T\) transition operator \(T=\left[\begin{matrix}-1 & Y\\K_{r} & -1\end{matrix}\right]\)
\(N\) decomposition operator \(N=\left[\begin{matrix}\frac{D_{max}\cdot K_{d}}{K_{d} +\frac{S}{\theta}} & 0\\0 &\frac{X\cdot\mu_{max}}{Y\cdot\left(K_{s}\cdot\theta + S\right)}\end{matrix}\right]\)
\(f_{s}\) the right hand side of the ode \(f_{s}=I+T\,N\,C\)

Pool model representation

Flux description

Figure 1
Figure 1: Pool model representation

Input fluxes

\(S: BGF + ExuM\cdot e^{- ExuT\cdot t}\)

Output fluxes

\(X: -\frac{D_{max}\cdot K_{d}\cdot X\cdot\theta}{K_{d}\cdot\theta + S}\cdot\left(K_{r} - 1\right)\)
\(S: -\frac{S\cdot X\cdot\mu_{max}\cdot\left(Y - 1\right)}{Y\cdot\left(K_{s}\cdot\theta + S\right)}\)

Internal fluxes

\(X > S: \frac{D_{max}\cdot K_{d}\cdot K_{r}\cdot X\cdot\theta}{K_{d}\cdot\theta + S}\)
\(S > X: \frac{S\cdot X\cdot\mu_{max}}{K_{s}\cdot\theta + S}\)

The right hand side of the ODE

\(\left[\begin{matrix}-\frac{D_{max}\cdot K_{d}\cdot X}{K_{d} +\frac{S}{\theta}} +\frac{S\cdot X\cdot\mu_{max}}{K_{s}\cdot\theta + S}\\BGF +\frac{D_{max}\cdot K_{d}\cdot K_{r}}{K_{d} +\frac{S}{\theta}}\cdot X + ExuM\cdot e^{- ExuT\cdot t} -\frac{S\cdot X\cdot\mu_{max}}{Y\cdot\left(K_{s}\cdot\theta + S\right)}\end{matrix}\right]\)

The Jacobian (derivative of the ODE w.r.t. state variables)

\(\left[\begin{matrix}-\frac{D_{max}\cdot K_{d}}{K_{d} +\frac{S}{\theta}} +\frac{S\cdot\mu_{max}}{K_{s}\cdot\theta + S} &\frac{D_{max}\cdot K_{d}\cdot X}{\theta\cdot\left(K_{d} +\frac{S}{\theta}\right)^{2}} -\frac{S\cdot X\cdot\mu_{max}}{\left(K_{s}\cdot\theta + S\right)^{2}} +\frac{X\cdot\mu_{max}}{K_{s}\cdot\theta + S}\\\frac{D_{max}\cdot K_{d}\cdot K_{r}}{K_{d} +\frac{S}{\theta}} -\frac{S\cdot\mu_{max}}{Y\cdot\left(K_{s}\cdot\theta + S\right)} & -\frac{D_{max}\cdot K_{d}\cdot K_{r}\cdot X}{\theta\cdot\left(K_{d} +\frac{S}{\theta}\right)^{2}} +\frac{S\cdot X\cdot\mu_{max}}{Y\cdot\left(K_{s}\cdot\theta + S\right)^{2}} -\frac{X\cdot\mu_{max}}{Y\cdot\left(K_{s}\cdot\theta + S\right)}\end{matrix}\right]\)

Steady state formulas

\(X = -\frac{Y\cdot e^{- ExuT\cdot t}}{2\cdot D_{max}\cdot K_{d}\cdot\mu_{max}\cdot\theta\cdot\left(K_{r}\cdot Y - 1\right)}\cdot\left(BGF\cdot D_{max}\cdot K_{d}\cdot\theta\cdot e^{ExuT\cdot t} + BGF\cdot K_{d}\cdot\mu_{max}\cdot\theta\cdot e^{ExuT\cdot t} - BGF\cdot\sqrt{K_{d}\cdot\theta^{2}\cdot\left(D_{max}^{2}\cdot K_{d} - 2\cdot D_{max}\cdot K_{d}\cdot\mu_{max} + 4\cdot D_{max}\cdot K_{s}\cdot\mu_{max} + K_{d}\cdot\mu_{max}^{2}\right)}\cdot e^{ExuT\cdot t} + D_{max}\cdot ExuM\cdot K_{d}\cdot\theta + ExuM\cdot K_{d}\cdot\mu_{max}\cdot\theta - ExuM\cdot\sqrt{K_{d}\cdot\theta^{2}\cdot\left(D_{max}^{2}\cdot K_{d} - 2\cdot D_{max}\cdot K_{d}\cdot\mu_{max} + 4\cdot D_{max}\cdot K_{s}\cdot\mu_{max} + K_{d}\cdot\mu_{max}^{2}\right)}\right)\)
\(S = \frac{1}{2\cdot\mu_{max}}\cdot\left(D_{max}\cdot K_{d}\cdot\theta - K_{d}\cdot\mu_{max}\cdot\theta -\sqrt{K_{d}\cdot\theta^{2}\cdot\left(D_{max}^{2}\cdot K_{d} - 2\cdot D_{max}\cdot K_{d}\cdot\mu_{max} + 4\cdot D_{max}\cdot K_{s}\cdot\mu_{max} + K_{d}\cdot\mu_{max}^{2}\right)}\right)\)

\(X = -\frac{Y\cdot e^{- ExuT\cdot t}}{2\cdot D_{max}\cdot K_{d}\cdot\mu_{max}\cdot\theta\cdot\left(K_{r}\cdot Y - 1\right)}\cdot\left(BGF\cdot D_{max}\cdot K_{d}\cdot\theta\cdot e^{ExuT\cdot t} + BGF\cdot K_{d}\cdot\mu_{max}\cdot\theta\cdot e^{ExuT\cdot t} + BGF\cdot\sqrt{K_{d}\cdot\theta^{2}\cdot\left(D_{max}^{2}\cdot K_{d} - 2\cdot D_{max}\cdot K_{d}\cdot\mu_{max} + 4\cdot D_{max}\cdot K_{s}\cdot\mu_{max} + K_{d}\cdot\mu_{max}^{2}\right)}\cdot e^{ExuT\cdot t} + D_{max}\cdot ExuM\cdot K_{d}\cdot\theta + ExuM\cdot K_{d}\cdot\mu_{max}\cdot\theta + ExuM\cdot\sqrt{K_{d}\cdot\theta^{2}\cdot\left(D_{max}^{2}\cdot K_{d} - 2\cdot D_{max}\cdot K_{d}\cdot\mu_{max} + 4\cdot D_{max}\cdot K_{s}\cdot\mu_{max} + K_{d}\cdot\mu_{max}^{2}\right)}\right)\)
\(S = \frac{1}{2\cdot\mu_{max}}\cdot\left(D_{max}\cdot K_{d}\cdot\theta - K_{d}\cdot\mu_{max}\cdot\theta +\sqrt{K_{d}\cdot\theta^{2}\cdot\left(D_{max}^{2}\cdot K_{d} - 2\cdot D_{max}\cdot K_{d}\cdot\mu_{max} + 4\cdot D_{max}\cdot K_{s}\cdot\mu_{max} + K_{d}\cdot\mu_{max}^{2}\right)}\right)\)

Steady states (potentially incomplete), according jacobian eigenvalues, damping ratio

Parameter set: Set 1

Taken limit \(X(t)\) for \(t\) to infinity.

\(X: 0.23\), \(S: -0.843\)

\(\lambda_{1}: -0.495-0.237j\)
\(\rho_{1}: 0.902095\)
\(\lambda_{2}: -0.495+0.237j\)
\(\rho_{2}: 0.902095\)

Taken limit \(X(t)\) for \(t\) to infinity.

\(X: 1.349\), \(S: 11.271\)

\(\lambda_{1}: -0.002+0.026j\)
\(\rho_{1}: 0.061045\)
\(\lambda_{2}: -0.002-0.026j\)
\(\rho_{2}: 0.061045\)

Model simulations


Model run 1 - solutions
Model run 1 - solutions: Initial values: Low, Parameter set: Set 1, Time step: 0.1

Model run 1 - phase planes
Model run 1 - phase planes: Initial values: Low, Parameter set: Set 1, Start: 0, End: 2000, Time step: 0.1

Model run 1 - system-age-distributions
Model run 1 - system-age-distributions: Initial values: Low, Parameter set: Set 1, Start: 0, End: 2000, Time step: 0.1

Model run 2 - solutions
Model run 2 - solutions: Initial values: Medium, Parameter set: Set 1, Time step: 0.1

Model run 2 - phase planes
Model run 2 - phase planes: Initial values: Medium, Parameter set: Set 1, Start: 0, End: 2000, Time step: 0.1

Model run 2 - system-age-distributions
Model run 2 - system-age-distributions: Initial values: Medium, Parameter set: Set 1, Start: 0, End: 2000, Time step: 0.1

Model run 3 - solutions
Model run 3 - solutions: Initial values: High, Parameter set: Set 1, Time step: 0.1

Model run 3 - phase planes
Model run 3 - phase planes: Initial values: High, Parameter set: Set 1, Start: 0, End: 2000, Time step: 0.1

Model run 3 - system-age-distributions
Model run 3 - system-age-distributions: Initial values: High, Parameter set: Set 1, Start: 0, End: 2000, Time step: 0.1

References

Zelenev, V. V., van Bruggen, A. H. C., & Semenov, A. M. (2000). “BACWAVE,” a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil. Microbial Ecology, 40(3), 260–272. http://doi.org/10.2307/4251775