This report is the result of the use of the Python 3.4 package Sympy (for symbolic mathematics), as means to translate published models to a common language. It was created by Holger Metzler (Orcid ID: 0000-0002-8239-1601) on 10/03/2016, and was last modified on lm.
The model depicted in this document considers soil organic matter decomposition. It was originally described by D. S. Jenkinson & Rayner (1977).
Data are assembled from the Rothamsted classical field experiments on the effects of long-continued cropping and manuring on the amount of organic matter in soil, on the age of this soil organic matter, on the amount of microbial biomass in the soil, and on the rate at which plant residues decompose in these soils. These data were then fitted to a model in which soil organic matter was separated into five compartments: decomposable plant material (DPM, half-life 0.165 years); resistant plant material (RPM, 2.31 years); soil biomass (BIO, 1.69 years); physically stabilized organic matter (POM, 49.5 years) and chemically stabilized organic matter (COM, 1980 years). For unitary input of plant material (1 t fresh plant \(C ha^{-1} year^{-1}\)) under steady-state conditions, after 10,000 years, the model predicts that the soil will contain 0.01 t C in DPM, 0.47 t in RPM, 0.28 t in BIO, 11.3 t in POM, and 12.2 t in COM. The predicted radiocarbon age is 1240 years (equivalent age). The fit between predicted and measured data is sufficiently good to suggest that the model is a useful representation of the turnover of organic matter in cropped soils.
differential equations, linear, time variant
mass balance, substrate dependence of decomposition, heterogeneity of speed of decay, internal transformations of organic matter, environmental variability effects
plot, field, catchment, regional, national, global
| Abbreviation | Description | Source |
|---|---|---|
| Set1 | original values without effects of temperature and soil moisture | Coleman & Jenkinson (1996) |
The following table contains the available information regarding this section:
| Name | Description | Units |
|---|---|---|
| \(C_{1}\) | decomposable plant material pool (DPM) | \(t C\cdot ha^{-1}\) |
| \(C_{2}\) | resistant plant material pool (RPM) | \(t C\cdot ha^{-1}\) |
| \(C_{3}\) | microbial biomass pool (BIO) | \(t C\cdot ha^{-1}\) |
| \(C_{4}\) | humified organic matter pool (HUM) | \(t C\cdot ha^{-1}\) |
| \(C_{5}\) | inert organic matter pool (IOM) | \(t C\cdot ha^{-1}\) |
The following table contains the available information regarding this section:
| Name | Description | Type | Units | Values Set1 |
|---|---|---|---|---|
| \(k_{1}\) | decomposition rate of DPM | parameter | \(yr^{-1}\) | \(10\) |
| \(k_{2}\) | decomposition rate of RPM | parameter | \(yr^{-1}\) | \(0.3\) |
| \(k_{3}\) | decomposition rate of BIO | parameter | \(yr^{-1}\) | \(0.66\) |
| \(k_{4}\) | decomposition rate of HUM | parameter | \(yr^{-1}\) | \(0.02\) |
The following table contains the available information regarding this section:
| Name | Description | Type | Values Set1 |
|---|---|---|---|
| \(pClay\) | percentage of clay in mineral soil | parameter | \(23.4\) |
| \(DR\) | ratio of DPM to RPM | parameter | \(1.44\) |
The following table contains the available information regarding this section:
| Name | Description | Expressions | Values Set1 |
|---|---|---|---|
| \(x\) | CO\(_2\) to (BIO+HUM) ratio | \(x=1.67\,\left(1.85+1.6\,\operatorname{exp}\left(- 0.0786\,pClay\right)\right)\) | - |
| \(\gamma\) | litter input partitioning coefficient | \(\gamma=\frac{DR}{1+DR}\) | - |
The following table contains the available information regarding this section:
| Name | Description | Type | Units | Values Set1 |
|---|---|---|---|---|
| \(J\) | mean annual carbon input | parameter | \(t C ha^{-1}yr^{-1}\) | \(1.7\) |
The following table contains the available information regarding this section:
| Name | Description | Expressions | Values Set1 |
|---|---|---|---|
| \(a\) | flux coefficient to BIO | \(a=\frac{0.46}{1+x}\) | - |
| \(b\) | flux coefficient to HUM | \(b=\frac{0.54}{1+x}\) | - |
The following table contains the available information regarding this section:
| Name | Description | Values Set1 |
|---|---|---|
| \(f_{T}\) | function of temperature | - |
| \(f_{W}\) | function of soil moisture | - |
The following table contains the available information regarding this section:
| Name | Description | Expressions |
|---|---|---|
| \(C\) | carbon content | \(C=\left[\begin{matrix}C_{1}\\C_{2}\\C_{3}\\C_{4}\\C_{5}\end{matrix}\right]\) |
| \(I\) | input vector | \(I=\left[\begin{matrix}J\cdot\gamma\\J\cdot\left(-\gamma + 1\right)\\0\\0\\0\end{matrix}\right]\) |
| \(\xi\) | environmental effects multiplier | \(\xi=f_{T}\,f_{W}\) |
| \(A\) | decomposition operator | \(A=\left[\begin{matrix}- k_{1} & 0 & 0 & 0 & 0\\0 & - k_{2} & 0 & 0 & 0\\a\cdot k_{1} & a\cdot k_{2} & a\cdot k_{3} - k_{3} & a\cdot k_{4} & 0\\b\cdot k_{1} & b\cdot k_{2} & b\cdot k_{3} & b\cdot k_{4} - k_{4} & 0\\0 & 0 & 0 & 0 & 0\end{matrix}\right]\) |
| \(f_{s}\) | the right hand side of the ode | \(f_{s}=I+\xi\,A\,C\) |
| Flux description | |
|---|---|
|
Figure 1: Pool model representation |
Input fluxes\(C_{1}: \frac{DR\cdot J}{DR + 1}\) Output fluxes\(C_{1}: \frac{C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\cdot\left(3.0895\cdot e^{0.0786\cdot pClay} + 2.672\right)\) Internal fluxes\(C_{1} > C_{3}: \frac{0.46\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)\(C_{1} > C_{4}: \frac{0.54\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\) \(C_{2} > C_{3}: \frac{0.46\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\) \(C_{2} > C_{4}: \frac{0.54\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\) \(C_{3} > C_{4}: \frac{0.54\cdot C_{3}\cdot f_{T}\cdot f_{W}\cdot k_{3}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\) \(C_{4} > C_{3}: \frac{0.46\cdot C_{4}\cdot f_{T}\cdot f_{W}\cdot k_{4}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\) |
\(\left[\begin{matrix}- C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1} +\frac{DR\cdot J}{DR + 1}\\- C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2} + J\cdot\left(-\frac{DR}{DR + 1} + 1\right)\\\frac{0.46\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} +\frac{0.46\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} + C_{3}\cdot f_{T}\cdot f_{W}\cdot\left(- k_{3} +\frac{0.46\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right) +\frac{0.46\cdot C_{4}\cdot f_{T}\cdot f_{W}\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\\\frac{0.54\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} +\frac{0.54\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} +\frac{0.54\cdot C_{3}\cdot f_{T}\cdot f_{W}\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} + C_{4}\cdot f_{T}\cdot f_{W}\cdot\left(- k_{4} +\frac{0.54\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right)\\0\end{matrix}\right]\)
\(\left[\begin{matrix}- f_{T}\cdot f_{W}\cdot k_{1} & 0 & 0 & 0 & 0\\0 & - f_{T}\cdot f_{W}\cdot k_{2} & 0 & 0 & 0\\\frac{0.46\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} &\frac{0.46\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} & f_{T}\cdot f_{W}\cdot\left(- k_{3} +\frac{0.46\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right) &\frac{0.46\cdot f_{T}\cdot f_{W}\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} & 0\\\frac{0.54\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} &\frac{0.54\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} &\frac{0.54\cdot f_{T}\cdot f_{W}\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} & f_{T}\cdot f_{W}\cdot\left(- k_{4} +\frac{0.54\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right) & 0\\0 & 0 & 0 & 0 & 0\end{matrix}\right]\)
\(C_{1} = \frac{DR\cdot J}{f_{T}\cdot f_{W}\cdot k_{1}\cdot\left(DR + 1.0\right)}\)
\(C_{2} = \frac{J}{f_{T}\cdot f_{W}\cdot k_{2}\cdot\left(DR + 1.0\right)}\)
\(C_{3} = \frac{5.50898203592814\cdot J\cdot\left(4.35845179839506\cdot 10^{18}\cdot e^{0.0786\cdot pClay} + 3.26027527396786\cdot 10^{19}\cdot e^{0.1572\cdot pClay} + 9.75003544221277\cdot 10^{19}\cdot e^{0.2358\cdot pClay} + 1.45709229508337\cdot 10^{20}\cdot e^{0.3144\cdot pClay} + 1.08814080708274\cdot 10^{20}\cdot e^{0.393\cdot pClay} + 3.24846079083974\cdot 10^{19}\cdot e^{0.4716\cdot pClay}\right)}{f_{T}\cdot f_{W}\cdot k_{3}\cdot\left(1.20455080421033\cdot 10^{21}\cdot e^{0.0786\cdot pClay} + 4.32631319287619\cdot 10^{21}\cdot e^{0.1572\cdot pClay} + 8.2702084578855\cdot 10^{21}\cdot e^{0.2358\cdot pClay} + 8.87329207447322\cdot 10^{21}\cdot e^{0.3144\cdot pClay} + 5.06562843927484\cdot 10^{21}\cdot e^{0.393\cdot pClay} + 1.20193049261071\cdot 10^{21}\cdot e^{0.4716\cdot pClay} + 1.39470457548642\cdot 10^{20}\right)}\)
\(C_{4} = \frac{6.46706586826347\cdot J\cdot\left(152615747584.0\cdot e^{0.0786\cdot pClay} + 700735890432.0\cdot e^{0.1572\cdot pClay} + 1072477329312.0\cdot e^{0.2358\cdot pClay} + 547142719339.0\cdot e^{0.3144\cdot pClay}\right)}{f_{T}\cdot f_{W}\cdot k_{4}\cdot\left(28070331154432.0\cdot e^{0.0786\cdot pClay} + 60246502483968.0\cdot e^{0.1572\cdot pClay} + 57190228203392.0\cdot e^{0.2358\cdot pClay} + 20244280615543.0\cdot e^{0.3144\cdot pClay} + 4883703922688.0\right)}\)
\(C_{5} = C_{5}\)
\(C_1: \frac{0.100327868852459}{f_{T}\cdot f_{W}}\), \(C_2: \frac{2.3224043715847}{f_{T}\cdot f_{W}}\), \(C_3: \frac{0.337161881627308}{f_{T}\cdot f_{W}}\), \(C_4: \frac{13.061358109997}{f_{T}\cdot f_{W}}\), \(C_5: C_{5}\)
\(\lambda_{1}: 0\)
\(\lambda_{2}: - 0.01733\cdot f_{T}\cdot f_{W}\)
\(\lambda_{3}: - 0.593\cdot f_{T}\cdot f_{W}\)
\(\lambda_{4}: - 10.0\cdot f_{T}\cdot f_{W}\)
\(\lambda_{5}: - 0.3\cdot f_{T}\cdot f_{W}\)
Coleman, K., & Jenkinson, D. S. (1996). Evaluation of soil organic matter models: Using existing long-term datasets. In (pp. 237–246). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-61094-3_17
Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical expermiments. Soil Science, 123(5), 298–305. http://doi.org/10.1097/00010694-197705000-00005