General Overview


Logo

This report is the result of the use of the Python 3.4 package Sympy (for symbolic mathematics), as means to translate published models to a common language. It was created by Holger Metzler (Orcid ID: 0000-0002-8239-1601) on 22/03/2016, and was last modified on lm.

About the model

The model depicted in this document considers soil organic matter decomposition. It was originally described by Fontaine & Barot (2005).

Abstract

Soil organic matter (SOM) models are based on the equation \(dC/dt = −kC\) which states that the decomposition rate of a particular carbon (C) pool is proportional to the size of the pool and the decomposition constant \(k\). However, this equation does not adequately describe the decomposition of recalcitrant SOM compounds. We present an alternative theory of SOM dynamics in which SOM decay rate is controlled by the size and the diversity of microbe populations and by the supply of energy-rich litter compounds. We show that the SOM pool does not necessarily reach equilibrium and may increase continuously, which explains how SOM can accumulate over thousands of years. However, the simulated SOM accumulation involves the sequestration of available nutrients. How can plants persist? This question is explored with two models that couple the C cycle with a limiting nutrient. The first model considers a single type of microbe whereas the second includes two functional types in competition for energy and nutrient acquisition. The condition for plant persistence is the presence of these two competing microbial types.

Keywords

differential equations, linear, time invariant, analytic

Principles

substrate dependence of decomposition, heterogeneity of speed of decay, internal transformations of organic matter, substrate interactions

State Variables

The following table contains the available information regarding this section:

Information on State Variables
Name Description Units
\(C_{s}\) carbon stock in soil organic matter \(\text{quantitiy of carbon}\)
\(C_{f}\) carbon stock in fresh organic matter \(\text{quantitiy of carbon}\)
\(C_{ds}\) carbon stock in soil organic matter decomposers \(\text{quantitiy of carbon}\)
\(C_{df}\) carbon stock in fresh organic matter decomposers \(\text{quantitiy of carbon}\)
\(N\) mineral nitrogen pool (\(N:C\) ratio always constant) \(\text{quantitiy of nitrogen}\)

Decomposition Coefficients

The following table contains the available information regarding this section:

Information on Decomposition Coefficients
Name Description Type Units
\(A\) decomposers consumption rate of SOM parameter \(\text{time}^{-1}\)
\(r\) fraction of decomposer biomass released as CO\(_2\) parameter \(\text{time}^{-1}\)
\(s\) decomposers production rate of soil organic matter parameter \(\text{time}^{-1}\)
\(k\) rate of fresh organic matter decomposition under substrate limitation (\(N\) excess) parameter \(\text{time}^{-1}\)
\(y\) soil organic matter decomposer consumption rate of fresh organic matter under substrate limitations parameter \(\text{time}^{-1}\)

Additional Parameters

The following table contains the available information regarding this section:

Information on Additional Parameters
Name Description Type Units
\(\alpha\) \(N:C\) ratio in soil organic matter and in decomposers parameter -
\(\beta\) \(N:C\) ratio in fresh organic matter parameter -
\(i\) rate of mineral \(N\) diffusion in soil parameter \(\text{time}^{-1}\)

Input Components

The following table contains the available information regarding this section:

Information on Input Components
Name Description Type Units
\(\Phi_{l}\) fresh organic matter carbon flux parameter \((\text{quantity of carbon})(\text{time}))^{-1}\)
\(\Phi_{i}\) nitrogen that flows into the ecosystem parameter \((\text{quantity of nitrogen})(\text{time}))^{-1}\)
\(\Phi_{o}\) nitrogen that flows out of the ecosystem parameter \((\text{quantity of nitrogen})(\text{time}))^{-1}\)
\(\Phi_{up}\) nitrogen flux associated with the nitrogen uptake by the plant cover parameter \((\text{quantity of nitrogen})(\text{time}))^{-1}\)

Components

The following table contains the available information regarding this section:

Information on Components
Name Description Expressions
\(I\) input vector \(I=\left[\begin{matrix}0\\\Phi_{l}\\0\\0\\\Phi_{i} -\Phi_{o} -\Phi_{up}\end{matrix}\right]\)
\(C\) carbon content \(C=\left[\begin{matrix}C_{s}\\C_{f}\\C_{ds}\\C_{df}\\N\end{matrix}\right]\)
\(A_{GM}\) decomposition operator \(A_{GM}=\left[\begin{matrix}-\frac{A}{C_{s}}\cdot C_{ds} & 0 & s & s & 0\\0 & - y & 0 & -\frac{\alpha\cdot r}{\alpha -\beta} & -\frac{i}{\alpha -\beta}\\\frac{A}{C_{s}}\cdot C_{ds} & y & - r - s & 0 & 0\\0 & 0 & 0 &\frac{\alpha\cdot r}{\alpha -\beta} - r - s &\frac{i}{\alpha -\beta}\\0 & y\cdot\left(-\alpha +\beta\right) &\alpha\cdot r & 0 & - i\end{matrix}\right]\)
\(f_{s}\) the right hand side of the ode \(f_{s}=I+A_{GM}\,C\)

Pool model representation

Flux description

Figure 1
Figure 1: Pool model representation

Input fluxes

\(C_{f}: \Phi_{l}\)
\(N: \Phi_{i} -\Phi_{o} -\Phi_{up}\)

Output fluxes

\(C_{f}: C_{f}\cdot y\cdot\left(\alpha -\beta\right)\)
\(C_{ds}: C_{ds}\cdot r\cdot\left(-\alpha + 1\right)\)
\(C_{df}: C_{df}\cdot r\)
\(N: N\cdot i\)

Internal fluxes

\(C_{s} > C_{ds}: A\cdot C_{ds}\)
\(C_{f} > C_{ds}: C_{f}\cdot y\)
\(C_{f} > N: C_{f}\cdot y\cdot\left(-\alpha +\beta\right)\)
\(C_{ds} > C_{s}: C_{ds}\cdot s\)
\(C_{ds} > N: C_{ds}\cdot\alpha\cdot r\)
\(C_{df} > C_{s}: C_{df}\cdot s\)
\(C_{df} > C_{f}: -\frac{C_{df}\cdot\alpha\cdot r}{\alpha -\beta}\)
\(N > C_{f}: -\frac{N\cdot i}{\alpha -\beta}\)
\(N > C_{df}: \frac{N\cdot i}{\alpha -\beta}\)

The right hand side of the ODE

\(\left[\begin{matrix}- A\cdot C_{ds} + C_{df}\cdot s + C_{ds}\cdot s\\-\frac{C_{df}\cdot\alpha\cdot r}{\alpha -\beta} - C_{f}\cdot y -\frac{N\cdot i}{\alpha -\beta} +\Phi_{l}\\A\cdot C_{ds} + C_{ds}\cdot\left(- r - s\right) + C_{f}\cdot y\\C_{df}\cdot\left(\frac{\alpha\cdot r}{\alpha -\beta} - r - s\right) +\frac{N\cdot i}{\alpha -\beta}\\C_{ds}\cdot\alpha\cdot r + C_{f}\cdot y\cdot\left(-\alpha +\beta\right) - N\cdot i +\Phi_{i} -\Phi_{o} -\Phi_{up}\end{matrix}\right]\)

The Jacobian (derivative of the ODE w.r.t. state variables)

\(\left[\begin{matrix}0 & 0 & - A + s & s & 0\\0 & - y & 0 & -\frac{\alpha\cdot r}{\alpha -\beta} & -\frac{i}{\alpha -\beta}\\0 & y & A - r - s & 0 & 0\\0 & 0 & 0 &\frac{\alpha\cdot r}{\alpha -\beta} - r - s &\frac{i}{\alpha -\beta}\\0 & y\cdot\left(-\alpha +\beta\right) &\alpha\cdot r & 0 & - i\end{matrix}\right]\)

References

Fontaine, S., & Barot, S. (2005). Size and functional diversity of microbe populations control plant persistence and long‐term soil carbon accumulation. Ecology Letters, 8(10), 1075–1087. http://doi.org/10.1111/j.1461-0248.2005.00813.x